Phylogenomics and Molecular Signatures for Species from the Plant Pathogen-Containing Order Xanthomonadales
نویسندگان
چکیده
The species from the order Xanthomonadales, which harbors many important plant pathogens and some human pathogens, are currently distinguished primarily on the basis of their branching in the 16S rRNA tree. No molecular or biochemical characteristic is known that is specific for these bacteria. Phylogenetic and comparative analyses were conducted on 26 sequenced Xanthomonadales genomes to delineate their branching order and to identify molecular signatures consisting of conserved signature indels (CSIs) in protein sequences that are specific for these bacteria. In a phylogenetic tree based upon sequences for 28 proteins, Xanthomonadales species formed a strongly supported clade with Rhodanobacter sp. 2APBS1 as its deepest branch. Comparative analyses of protein sequences have identified 13 CSIs in widely distributed proteins such as GlnRS, TypA, MscL, LysRS, LipA, Tgt, LpxA, TolQ, ParE, PolA and TyrB that are unique to all species/strains from this order, but not found in any other bacteria. Fifteen additional CSIs in proteins (viz. CoxD, DnaE, PolA, SucA, AsnB, RecA, PyrG, LigA, MutS and TrmD) are uniquely shared by different Xanthomonadales except Rhodanobacter and in a few cases by Pseudoxanthomonas species, providing further support for the deep branching of these two genera. Five other CSIs are commonly shared by Xanthomonadales and 1-3 species from the orders Chromatiales, Methylococcales and Cardiobacteriales suggesting that these deep branching orders of Gammaproteobacteria might be specifically related. Lastly, 7 CSIs in ValRS, CarB, PyrE, GlyS, RnhB, MinD and X001065 are commonly shared by Xanthomonadales and a limited number of Beta- or Gamma-proteobacteria. Our analysis indicates that these CSIs have likely originated independently and they are not due to lateral gene transfers. The Xanthomonadales-specific CSIs reported here provide novel molecular markers for the identification of these important plant and human pathogens and also as potential targets for development of drugs/agents that specifically target these bacteria.
منابع مشابه
The evolutionary origin of Xanthomonadales genomes and the nature of the horizontal gene transfer process.
Determining the influence of horizontal gene transfer (HGT) on phylogenomic analyses and the retrieval of a tree of life is relevant for our understanding of microbial genome evolution. It is particularly difficult to differentiate between phylogenetic incongruence due to noise and that resulting from HGT. We have performed a large-scale, detailed evolutionary analysis of the different phylogen...
متن کاملSpecies of Colletotrichum associated with citrus trees in Iran
Colletotrichum species are associated with citrus plants as pathogens, saprobes and endophytes. According to the most recent multigene phylogenetic analysis, a lot of changes were happened in the taxonomy and species delimitation in the genus Colletotrichum. In this investigation, 292 Colletotrichum isolates were obtained from leaves, fruits and stems of Citrus species at Golestan, Mazandaran, ...
متن کاملGenetic Diversity among Plant Pathogenic Streptomyces Strains from Potato Fields in Northwest of Iran
Different species of Streptomyces are common in most types of soil. Some certain species are plant pathogenic especially on potato. This study was conducted to evaluate genetic diversity among some local Streptomyces spp. strains isolated from soil and infected tubers in potato farms in northwest of Iran. Repetitive DNA elements (BOX, ERIC and REP) as genetic markers were used for diversity stu...
متن کاملPapaya Dieback in Malaysia: A StepTowards A New Insight of Disease Resistance
A recently published article describing the draft genome of Erwiniamallotivora BT-Mardi (1), the causal pathogen of papaya dieback infection in Peninsular Malaysia, hassignificant potential to overcome and reduce the effect of this vulnerable crop (2). The authors found that the draft genome sequenceis approximately 4824 kbp and the G+C content of the genomewas 52-54%, which is very similarto t...
متن کاملPhylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera
The genus Mycobacterium contains 188 species including several major human pathogens as well as numerous other environmental species. We report here comprehensive phylogenomics and comparative genomic analyses on 150 genomes of Mycobacterium species to understand their interrelationships. Phylogenetic trees were constructed for the 150 species based on 1941 core proteins for the genus Mycobacte...
متن کامل